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Solar Power Anti-Islanding and Control
Problem: When connecting a solar power source to the 
AC mains it is possible to supply power to the local area in 
the event of a power outage. While your neighbors might 
be happy with this behavior, it is a hazard to utility workers 
attempting to restore power. This affect, called islanding, 
must be eliminated in the Grid Tie Inverter design. If a phase-
locked oscillator synchronizes the inverter output to the line; 
then a power outage results in the inverter synchronizing to 
its self. The frequency will then drift out of tolerance, signaling 
a power outage. This article describes how to achieve this 
design goal using a digital controller and Intusoft’s DSP 
Designer to simulate the digital design and generate some 
of the necessary code.

Testing the anti-islanding feature: The U.S. 
National Electric Code, NEC, defines a test using a resonant 
circuit at the inverter input, which has a Q of 3 at the inverter 
maximum power level. The circuit is adjusted so that removal 
of the mains power will not be detected instantly. The inverter 
will not be overloaded so that in the absence of special 
detection circuitry, the solar power will electrify the local grid.

Block Diagram: Figure 1 is a block diagram of the line 

synchronizing system. Notice that the operation of this system 
doesn’t depend upon the NEC test condition. The idea is to 
synchronize the inverter using a phase-locked-loop, PLL 
[1]. If the grid is only supplied by the Inverter, then no error 
signal is developed at the phase detector and the frequency 
will drift toward zero. When it gets below some pre-defined 
limit, the Inverter is shut off until mains power is restored; at 
which time the PLL syncs up and solar power generation is 
resumed. The logic gets a bit more complex when a battery 
backup is included, requiring a switch to isolate the grid from 
the backup loads. The traditional PLL controller consists 
of a multiplier to detect the phase error, followed by a PI 
controller. The large second harmonic signal must be filtered 
to reduce non-linearity in the voltage-controlled oscillator, 
VCO, and to allow meaningful measurement of phase error, 
frequency and line voltage.

Theory: Phase Locked Loops belong to a class of nonlinear 
circuits that have been studied extensively [1]. When phase 
detection is accomplished using a multiplier, the second-
order nonlinear equation can be solved explicitly. PLLs are 
used in communications circuits, such as Global Positioning 
Systems (GPS) to make a narrow band filter centered about 
the carrier frequency. The noise filter, while not part of the 
lower frequency phase control loop, is used to eliminate 
out of band noise. For this problem, the carrier signal is the 
60 Hz mains and it is not particularly noisy, although it may 
have some harmonic distortion. The mains frequency is 
tightly controlled so that various generators on the grid can 
be easily synchronized. The main signal to be eliminated by 
the noise filter is the double frequency, 120 Hz, component 
that is output by the phase detector. The digital filter used 
here reduces this unwanted signal by nearly 40 dB. The 
average value of the mains fundamental is detected using 
the quadrature signal from the VCO, which is synchronized 
to the mains. The following logic is used to indicate that 
synchronization has begun; that is, it sets a software flip-flop: 

VlinAvg > 78 Volts (86 VRMS) and
abs(frequency-60) < 1) and
 (abs)phase < .025 radians (1.4 degrees)

The flip-flop is reset when: 
abs(frequency-60) > 2) or
VlinAvg < 72 Volts (79 VRMS)

The first reset condition accomplishes the anti-
islanding function when the Inverter is supplying 
power to the grid, and the second condition signals 
a grid power loss when in standby. The sine output 
of the VCO is used to switch synchronous rectifiers 
used to transfer power between the grid and the 
backup system when a backup battery is present. 
Backup systems require transferring power in either 
direction to account for load phase shift (motors) 
and battery charging, so the use of synchronously 
switched rectifiers is required.

Selecting Sample Rates: High sample rates 
give improved accuracy but require longer digital 
word lengths. Constraining word lengths to 16 
bits allows the use of very low cost and low power 
digital controllers. For this problem, the sine-cosine 
generator is run at the Inverter switching frequency, 
which is 25 kHz, a  40 microseconds. That resolves 
the line voltage to about 2.5 Volts at zero crossing for 
a 120 Volt RMS line. But the PLL can be sampled at 

a much lower rate, greater than or equal to 10 times 
its loop bandwidth.  The communication system for this DSP 
runs at 1 kHz, which meets this criteria.  

DSP Equations: The DSP equations are formed using a 
matrix algebra approach. A SPICE simulator is used to build 
up the matrix from the simulation schematics net list. Then 
the matrix is ordered from top to bottom, first using unwanted 
states, then using the states that need to be computed, 
and finally using states that are available as inputs. For a 
linear system, the right-hand side of the matrix is constant. 
When this matrix is arranged in a triangular form, it can be 
solved repeatedly at each sample time by using backward 
substitution. 
 http://www.intusoft.com/dsp/matrix_solution.pdf
Each row in the backward substitution is formed using a 
multiply-accumulate series. Scaling is accomplished by 
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programmers’ language for smoke! It might seem that using 
saturation limits in intermediate calculations is a good idea.  
However, it is permissible to have intermediate overflows as 
long as the resulting state variable doesn’t overflow. See:

http://www.intusoft.com/dsp/dsp.pdf pg 16

Phase Detector and Filter: The phase detector uses 
a multiplier in the classical PLL approach. The filter is a 2nd 
order elliptic filter with 1dB ripple and 20 dB attenuation. The 
s-plane roots can be calculated using:

 www.intusoft.com/filter.htm. 
The cutoff frequency is adjusted so the filter notch is at 120 
Hz in order to minimize the 2nd harmonic noise. Figure 2 
shows the digital realization converting the s-plane roots to 
direct programming coefficients using the parameter block 
shown in Table 1. An extra pole was added to further reduce 
the noise without impacting the PI controller performance. 
The circuit was turned into a SPICE subcircuit and added to 
a user library. Code was generated for the DSP version of 
the circuit [2]. 

Table 1, Parameters
Parameters
gain=.1
Radix=13
onee=2^Radix; sets quantizing levels
T=1m
Tsc=40u
Fc=37.1; adjust for minimum at 120 Hz
DR=-.5148;pole real part
DI=.9424;pole imaginary part
NR=0; zero real part
NI=3.205; zero imaginary part
BW=2*3.14159*Fc

scaling the matrix constants up by 2^radix. When the multiply 
accumulate is finished, the result is multiplied by 2^-radix and 
saved. These saved results are the desired state solutions 
and their values are used in subsequent state computations. 
All of this can be automated so the only thing that must 
be supplied is the radix parameter. The magnitude of the 
resulting coefficients lie between 1 and 2^15. If larger than 
2^15, the multiply can’t be done using 16-bit integers. As the 
coefficients approach 1, the pole-zero placement accuracy 
is compromised. 

Scaling: Each linear block in the system must be scaled; 
that is, the radix and sampling frequency need to be selected. 
Sampling frequencies come from a limited set of real time 
interrupts. For this problem, they are either 40 kHz or 1 kHz. 
Here are the blocks to be scaled:

1. ADC, this block is sampled at 40 kHz because that 
is the Inverter switching rate. It is used both here 
and for the Inverter control system. 

2. PLL noise filter sample rate uses the 1 kHz sample 
rate. This is because it is the lowest available 
interrupt rate that is greater than 10 times 
the PLL bandwidth.

3. Noise filter sampling also uses the 1 kHz 
interrupt and sets radix=10

4. The VCO is sampled at 40 kHz because its 
sine output is used as the Inverter set point. 
Internal scaling uses radix=13.

5. The multiplier is a non-linear block that is 
computed at the PLL sample rate. Since it 
is non-linear, its solution does not use the 
matrix solution technique and is:
Vmul= ((Vline)*(long)zic)/1571
=(((Vline*(long)zic)>>10)*5340)>>13

The A to D converter outputs an unsigned 12-bit 
value. For DSPs using 10 bits, it is shifted left by 2 
places before being used. Subtracting 2048 makes 
it a signed number (Vline), accounting for the Vref/2 
offset. Casting zic to a long forces the first product 
to be a long so that the result doesn’t underflow. 
The result is automatically changed back to a 16-bit 
integer by the C compiler because that’s the data 
type of Vmul. The 1571 value scales the peak signal 
used in the noise filter and accounts for the ADC input 
signal conditioning gain. The equation is re-arranged 
to eliminate the division as show in 5 above(1/1530 
= 5340*2^-23). The noise filter gain is set to prevent 
saturation within the filter by using simulation results. 
Similarly, the gain of the shaping network is set to 
prevent saturation of the internal frequency state 
and fine-tunes the over-all loop response. Again, the 
adjustment relies on simulation results. The initial condition 
of the frequency state is set so the shaping network output, 
Vfreq,  is 377 rad/sec (2*pi*60 Hz). With that scaling, the gain 
of the VCO integrators is Vfreq*Tsc, where Tsc is the sine-
cosine sampling period.

There is no single “right”” answer to the scaling problem. The 
trick is to avoid the wrong answers. Aggressive scaling will 
adjust maximum state values close to saturation limits. At 
the same time, the quantizing noise will be reduced because 
the dynamic range is maximized. If saturation occurs, the 
control system can produce unexpected results. That’s 
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Figure 2, Noise Filter
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BW2=BW*BW
D2=1
D1 = -2*DR
D0=DR*DR+DI*DI
N2=1
N1=2*NR
N0=NI*NI+NR*NR
* Quantized Coefficients below
a=floor(onee*D0/N0+.5)/onee
a0=D0*BW2 + D1/T*BW+D2/T/T
a1=-floor(onee*(D1/T*BW+2*D2/T/T)/a0+.5)/onee
a2=floor(onee*D2/T/T/a0+.5)/onee
b0=floor(onee*(N0*BW2 + N1/T*BW+N2/T/T)/a0+.5)/onee
b1=-floor(onee*(N1/T*BW+2*N2/T/T)/a0+.5)/onee
b2=floor(onee*N2/T/T/a0+.5)/onee

The PI Controller: A simple PI controller shown in Figure 
3 sets up the control loop. Notice that the internal integrator 
has a signal that is proportional to frequency, and it will be 
used later on in the anti-islanding logic.
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The VCO: The VCO is implemented using an algorithmic 
sine-cosine oscillator. Two integrators are cascaded with the 
gain controlled using a non-linear block in series with each 
integrator. One of the integrators uses the delayed output for 
2 reasons:

1. The total phase lag around the loop must exceed 
180 degrees to make an oscillator.

2. The equations need to be broken up to avoid 
solving simultaneous equations, so the gain 
constants can be used directly.

An automatic gain control, AGC, limiter is used to keep the 
oscillation at a constant level. A simple peak detector is used, 
it’s contained within the Zdelay model. Figure 4 shows the 
SPICE model and Table 21 shows the C-language code. 

Table 2, VCO source code
void vco(void)
{
 si= (long)((((long)freq*zoc)>>13)*2684) >> 13 ; 
 zis=si+zos;
 ci = (long)((((long)freq*zis)>>13)*2684) >> 13; 
 zic=zoc-ci;
 zoc=zic;
 zos=zis;
 if(zos > 8192) {
  zos = 8192;
  zoc=0;

}
}

B1
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Figure 4, VCO

Notice that B1 and B2 equations were scaled to work with integers.

Simulation Results: Figure 5 shows the startup 
transient when the VCO phase is 180 degrees out of phase 
with the line. At 500msec a line failure is simulated by 
connecting the
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Figure 5, Simulation Results

VCO output to the line input. Notice the frequency drifting out 
of tolerance in less than .5 second because the integration 
constant, Figure 3 X8:K2, was set slightly less than 1, forcing 
the output to decay toward 0 with no error signal.

Test Results: Real time programming is fraught with 
unexpected behavior. That’s why; even with the best tools it 
takes orders of magnitude more time to program a “line” of 
code. For this problem, several stumbling blocks needed to 
be resolved. 

1. The 1msec sampled difference equations are 
interrupted by the 40 msec interrupt service 
request (ISR). Both the 40 msec and 1 msec ISR 
use the MAC accumulators. (These implement 
special DSP functions for multiply-accumulate.)  
Therefore, the 40 msec ISRs needs to push 
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these accumulators onto the stack. When this 
is omitted, the resultant VCO signal is erratic.

2. The 60 Hz sync signal test was originally:
if((zis > 0) && (zos < 0)){
LATBbits.LATB8 = 0;
}
else if((zis < 0) && (zos > 0)){
LATBbits.LATB8 = 1;
} 
and it was changed to: 
if((zis > 0) && (zos <= 0)){
LATBbits.LATB8 = 0;
}
else if((zis < 0) && (zos >= 0)){
LATBbits.LATB8 = 1;
}
because the occasional time when zos was 
equal to zero caused the sync signal to fail.

3. The 3rd order input filter was originally setup to 
first do the elliptic filter section followed by the 
first order pole. Both filters were to be done in 
the 1ms ISR. However, 1 msec is too granular for 
synchronization. And the elliptic filter couldn’t be 
solved in the 40usec ISR. The filter was revised 
to place the pole before the elliptic filter and was 
solved in the 40 usec ISR. That combination 
satisfied the accuracy and scaling requirements.

4. The PLL gain is proportional to the magnitude of 
the input signal. To eliminate gain changes with 
power line voltage, the line signal was passed 
through limiting code. The limiter includes a 
25-sample lockout to “de-bounce” the output.

All of these seemingly minor problems required 2 days 
to resolve (6 days real time!) and produced only 40 
lines of C code (plus about 100 lines DSP Designer 
code).

A test signal was generated using the 40 usec ISR 
and was input to the PLL at  60.0962 Hz. Test code 
was used to measure peak and RMS noise, using the 
deviation of the zos (sine signal) when the sync signal 
switched. Results for 1000 samples were:

 Peak deviation: 3.9%
 RMS deviation:  .75%

The test code remains in the source code[2] and can 
be activate by including the
  #define TESTERROR
line.

Summary: Converting analog technology into a digital 
implementation is made easier using Z-Transform models 
with SPICE simulation. Moreover, automatic code generation 
using a matrix-based solution relieves the designer of 
the excruciating job of scaling each multiply-accumulate 
operation. It uniquely eliminates unused states by ordering 
the unneeded states at the top of the matrix so that backward 
substitution ends with the last required state…it simply 
doesn’t solve for unused states.

These features are unique to ICAP/4 DSP Designer; to 
recap:

1. A new more efficient Z-Transform model that 
guarantees convergence

2. Decomposition of the SPICE matrix for DSP code 
generation

3. Generic C-Code generation
4. Assembly code for selected DSPs
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