
‑ 1 ‑

Digital Control Series

Solar Power Anti-Islanding and Control
Problem: When connecting a solar power source to the
AC mains it is possible to supply power to the local area in
the event of a power outage. While your neighbors might
be happy with this behavior, it is a hazard to utility workers
attempting to restore power. This affect, called islanding,
must be eliminated in the Grid Tie Inverter design. If a phase-
locked oscillator synchronizes the inverter output to the line;
then a power outage results in the inverter synchronizing to
its self. The frequency will then drift out of tolerance, signaling
a power outage. This article describes how to achieve this
design goal using a digital controller and Intusoft’s DSP
Designer to simulate the digital design and generate some
of the necessary code.

Testing the anti-islanding feature: The U.S.
National Electric Code, NEC, defines a test using a resonant
circuit at the inverter input, which has a Q of 3 at the inverter
maximum power level. The circuit is adjusted so that removal
of the mains power will not be detected instantly. The inverter
will not be overloaded so that in the absence of special
detection circuitry, the solar power will electrify the local grid.

Block Diagram: Figure 1 is a block diagram of the line

synchronizing system. Notice that the operation of this system
doesn’t depend upon the NEC test condition. The idea is to
synchronize the inverter using a phase-locked-loop, PLL
[1]. If the grid is only supplied by the Inverter, then no error
signal is developed at the phase detector and the frequency
will drift toward zero. When it gets below some pre-defined
limit, the Inverter is shut off until mains power is restored; at
which time the PLL syncs up and solar power generation is
resumed. The logic gets a bit more complex when a battery
backup is included, requiring a switch to isolate the grid from
the backup loads. The traditional PLL controller consists
of a multiplier to detect the phase error, followed by a PI
controller. The large second harmonic signal must be filtered
to reduce non-linearity in the voltage-controlled oscillator,
VCO, and to allow meaningful measurement of phase error,
frequency and line voltage.

Theory: Phase Locked Loops belong to a class of nonlinear
circuits that have been studied extensively [1]. When phase
detection is accomplished using a multiplier, the second-
order nonlinear equation can be solved explicitly. PLLs are
used in communications circuits, such as Global Positioning
Systems (GPS) to make a narrow band filter centered about
the carrier frequency. The noise filter, while not part of the
lower frequency phase control loop, is used to eliminate
out of band noise. For this problem, the carrier signal is the
60 Hz mains and it is not particularly noisy, although it may
have some harmonic distortion. The mains frequency is
tightly controlled so that various generators on the grid can
be easily synchronized. The main signal to be eliminated by
the noise filter is the double frequency, 120 Hz, component
that is output by the phase detector. The digital filter used
here reduces this unwanted signal by nearly 40 dB. The
average value of the mains fundamental is detected using
the quadrature signal from the VCO, which is synchronized
to the mains. The following logic is used to indicate that
synchronization has begun; that is, it sets a software flip-flop:

VlinAvg > 78 Volts (86 VRMS) and
abs(frequency-60) < 1) and
 (abs)phase < .025 radians (1.4 degrees)

The flip-flop is reset when:
abs(frequency-60) > 2) or
VlinAvg < 72 Volts (79 VRMS)

The first reset condition accomplishes the anti-
islanding function when the Inverter is supplying
power to the grid, and the second condition signals
a grid power loss when in standby. The sine output
of the VCO is used to switch synchronous rectifiers
used to transfer power between the grid and the
backup system when a backup battery is present.
Backup systems require transferring power in either
direction to account for load phase shift (motors)
and battery charging, so the use of synchronously
switched rectifiers is required.

Selecting Sample Rates: High sample rates
give improved accuracy but require longer digital
word lengths. Constraining word lengths to 16
bits allows the use of very low cost and low power
digital controllers. For this problem, the sine-cosine
generator is run at the Inverter switching frequency,
which is 25 kHz, a 40 microseconds. That resolves
the line voltage to about 2.5 Volts at zero crossing for
a 120 Volt RMS line. But the PLL can be sampled at

a much lower rate, greater than or equal to 10 times
its loop bandwidth. The communication system for this DSP
runs at 1 kHz, which meets this criteria.

DSP Equations: The DSP equations are formed using a
matrix algebra approach. A SPICE simulator is used to build
up the matrix from the simulation schematics net list. Then
the matrix is ordered from top to bottom, first using unwanted
states, then using the states that need to be computed,
and finally using states that are available as inputs. For a
linear system, the right-hand side of the matrix is constant.
When this matrix is arranged in a triangular form, it can be
solved repeatedly at each sample time by using backward
substitution.
 http://www.intusoft.com/dsp/matrix_solution.pdf
Each row in the backward substitution is formed using a
multiply-accumulate series. Scaling is accomplished by

May 2012

A

B
A*B Noise

Filter

A

B
A*B Noise

Filter

Mains

PI
Controller

Cos

Sin

Control

VCO

VlineAvg

Phase

Frequency

Phase
Detectors

ADC

Figure 1, Block Diagram

http://www.intusoft.com/dsp/matrix_solution.pdf

‑ 2 ‑

Digital Control Series

programmers’ language for smoke! It might seem that using
saturation limits in intermediate calculations is a good idea.
However, it is permissible to have intermediate overflows as
long as the resulting state variable doesn’t overflow. See:

http://www.intusoft.com/dsp/dsp.pdf pg 16

Phase Detector and Filter: The phase detector uses
a multiplier in the classical PLL approach. The filter is a 2nd
order elliptic filter with 1dB ripple and 20 dB attenuation. The
s-plane roots can be calculated using:

 www.intusoft.com/filter.htm.
The cutoff frequency is adjusted so the filter notch is at 120
Hz in order to minimize the 2nd harmonic noise. Figure 2
shows the digital realization converting the s-plane roots to
direct programming coefficients using the parameter block
shown in Table 1. An extra pole was added to further reduce
the noise without impacting the PI controller performance.
The circuit was turned into a SPICE subcircuit and added to
a user library. Code was generated for the DSP version of
the circuit [2].

Table 1, Parameters
Parameters
gain=.1
Radix=13
onee=2^Radix; sets quantizing levels
T=1m
Tsc=40u
Fc=37.1; adjust for minimum at 120 Hz
DR=-.5148;pole real part
DI=.9424;pole imaginary part
NR=0; zero real part
NI=3.205; zero imaginary part
BW=2*3.14159*Fc

scaling the matrix constants up by 2^radix. When the multiply
accumulate is finished, the result is multiplied by 2^-radix and
saved. These saved results are the desired state solutions
and their values are used in subsequent state computations.
All of this can be automated so the only thing that must
be supplied is the radix parameter. The magnitude of the
resulting coefficients lie between 1 and 2^15. If larger than
2^15, the multiply can’t be done using 16-bit integers. As the
coefficients approach 1, the pole-zero placement accuracy
is compromised.

Scaling: Each linear block in the system must be scaled;
that is, the radix and sampling frequency need to be selected.
Sampling frequencies come from a limited set of real time
interrupts. For this problem, they are either 40 kHz or 1 kHz.
Here are the blocks to be scaled:

1. ADC, this block is sampled at 40 kHz because that
is the Inverter switching rate. It is used both here
and for the Inverter control system.

2. PLL noise filter sample rate uses the 1 kHz sample
rate. This is because it is the lowest available
interrupt rate that is greater than 10 times
the PLL bandwidth.

3. Noise filter sampling also uses the 1 kHz
interrupt and sets radix=10

4. The VCO is sampled at 40 kHz because its
sine output is used as the Inverter set point.
Internal scaling uses radix=13.

5. The multiplier is a non-linear block that is
computed at the PLL sample rate. Since it
is non-linear, its solution does not use the
matrix solution technique and is:
Vmul= ((Vline)*(long)zic)/1571
=(((Vline*(long)zic)>>10)*5340)>>13

The A to D converter outputs an unsigned 12-bit
value. For DSPs using 10 bits, it is shifted left by 2
places before being used. Subtracting 2048 makes
it a signed number (Vline), accounting for the Vref/2
offset. Casting zic to a long forces the first product
to be a long so that the result doesn’t underflow.
The result is automatically changed back to a 16-bit
integer by the C compiler because that’s the data
type of Vmul. The 1571 value scales the peak signal
used in the noise filter and accounts for the ADC input
signal conditioning gain. The equation is re-arranged
to eliminate the division as show in 5 above(1/1530
= 5340*2^-23). The noise filter gain is set to prevent
saturation within the filter by using simulation results.
Similarly, the gain of the shaping network is set to
prevent saturation of the internal frequency state
and fine-tunes the over-all loop response. Again, the
adjustment relies on simulation results. The initial condition
of the frequency state is set so the shaping network output,
Vfreq, is 377 rad/sec (2*pi*60 Hz). With that scaling, the gain
of the VCO integrators is Vfreq*Tsc, where Tsc is the sine-
cosine sampling period.

There is no single “right”” answer to the scaling problem. The
trick is to avoid the wrong answers. Aggressive scaling will
adjust maximum state values close to saturation limits. At
the same time, the quantizing noise will be reduced because
the dynamic range is maximized. If saturation occurs, the
control system can produce unexpected results. That’s

SU
M

2

K1 K2

3

X5
K1 = -a2
K2 = -a1

SUM2

K1

K2

X13
K1 = a*gain
K2 = 1

Z
 -

 1

A6
ZDELAY
tsample = {T}
ic = 0

Z
 -

 1A7
ZDELAY
tsample = {T}
ic = 0

SU
M

2

K1 K2

2

X14
K1 = b1
K2 = b2

SUM2

K1

K2

X15
K1 = b0
K2 = 1

zi10

V7
unknown

zi32

zo32

zo10

ph

Vcp

Z - 1

A5
ZDELAY

SUM2

K1

K2

X12
SUM2
K1 = .01
K2 = .99

zopd

zipd First Stage
Tsample=40 usec

Second Stage Tsample=1 msec

Figure 2, Noise Filter

http://www.intusoft.com/dsp/dsp.pdf
http://www.intusoft.com/filter.htm

‑ 3 ‑

Digital Control Series

BW2=BW*BW
D2=1
D1 = -2*DR
D0=DR*DR+DI*DI
N2=1
N1=2*NR
N0=NI*NI+NR*NR
* Quantized Coefficients below
a=floor(onee*D0/N0+.5)/onee
a0=D0*BW2 + D1/T*BW+D2/T/T
a1=-floor(onee*(D1/T*BW+2*D2/T/T)/a0+.5)/onee
a2=floor(onee*D2/T/T/a0+.5)/onee
b0=floor(onee*(N0*BW2 + N1/T*BW+N2/T/T)/a0+.5)/onee
b1=-floor(onee*(N1/T*BW+2*N2/T/T)/a0+.5)/onee
b2=floor(onee*N2/T/T/a0+.5)/onee

The PI Controller: A simple PI controller shown in Figure
3 sets up the control loop. Notice that the internal integrator
has a signal that is proportional to frequency, and it will be
used later on in the anti-islanding logic.

SUM2

K1

K2

X8
SUM2
K1 = -gain
K2 = .9995

Z^-1

A3
ZDELAY
tsample = 1m
ic = {ic}

SUM2

K1

K2

X9
SUM2
K1 = -gain
K2 = Wcn*T

zof zif

ph k2

Frequency

V1

Figure 3, PI Controller with Frequency Test Point

The VCO: The VCO is implemented using an algorithmic
sine-cosine oscillator. Two integrators are cascaded with the
gain controlled using a non-linear block in series with each
integrator. One of the integrators uses the delayed output for
2 reasons:

1. The total phase lag around the loop must exceed
180 degrees to make an oscillator.

2. The equations need to be broken up to avoid
solving simultaneous equations, so the gain
constants can be used directly.

An automatic gain control, AGC, limiter is used to keep the
oscillation at a constant level. A simple peak detector is used,
it’s contained within the Zdelay model. Figure 4 shows the
SPICE model and Table 21 shows the C-language code.

Table 2, VCO source code
void vco(void)
{
 si= (long)((((long)freq*zoc)>>13)*2684) >> 13 ;
 zis=si+zos;
 ci = (long)((((long)freq*zis)>>13)*2684) >> 13;
 zic=zoc-ci;
 zoc=zic;
 zos=zis;
 if(zos > 8192) {
 zos = 8192;
 zoc=0;

}
}

B1
Voltage

(v(k)*v(zis)*{Tsc}+.5)

B2
Voltage

(v(k)*v(zoc)*{Tsc}+.5)

SUM2

K1

K2

X1
SUM2
K1 = -1
K2 = 1

Z^-1

A1
ZDELAY
tsample = 40u
ic = 8192

SUM2

K1

K2

X2
SUM2
K1 = 1
K2 = 1

Z^-1

A2
ZDELAY
tsample = 40u
ic = 0

zoc
zic zos

zisci

si

Figure 4, VCO

Notice that B1 and B2 equations were scaled to work with integers.

Simulation Results: Figure 5 shows the startup
transient when the VCO phase is 180 degrees out of phase
with the line. At 500msec a line failure is simulated by
connecting the

1 frequency 2 v14 3 v(ph) 4 v7

100m 300m 500m 700m 900m
time in seconds

43.0

47.0

51.0

55.0

59.0

fre
qu

en
cy

 in
 H

er
tz

Pl
ot

1

2

3

4

1Frequency

Vavg Line
Phase

Sync

Figure 5, Simulation Results

VCO output to the line input. Notice the frequency drifting out
of tolerance in less than .5 second because the integration
constant, Figure 3 X8:K2, was set slightly less than 1, forcing
the output to decay toward 0 with no error signal.

Test Results: Real time programming is fraught with
unexpected behavior. That’s why; even with the best tools it
takes orders of magnitude more time to program a “line” of
code. For this problem, several stumbling blocks needed to
be resolved.

1. The 1msec sampled difference equations are
interrupted by the 40 msec interrupt service
request (ISR). Both the 40 msec and 1 msec ISR
use the MAC accumulators. (These implement
special DSP functions for multiply-accumulate.)
Therefore, the 40 msec ISRs needs to push

‑ 4 ‑

Digital Control Series

these accumulators onto the stack. When this
is omitted, the resultant VCO signal is erratic.

2. The 60 Hz sync signal test was originally:
if((zis > 0) && (zos < 0)){
LATBbits.LATB8 = 0;
}
else if((zis < 0) && (zos > 0)){
LATBbits.LATB8 = 1;
}
and it was changed to:
if((zis > 0) && (zos <= 0)){
LATBbits.LATB8 = 0;
}
else if((zis < 0) && (zos >= 0)){
LATBbits.LATB8 = 1;
}
because the occasional time when zos was
equal to zero caused the sync signal to fail.

3. The 3rd order input filter was originally setup to
first do the elliptic filter section followed by the
first order pole. Both filters were to be done in
the 1ms ISR. However, 1 msec is too granular for
synchronization. And the elliptic filter couldn’t be
solved in the 40usec ISR. The filter was revised
to place the pole before the elliptic filter and was
solved in the 40 usec ISR. That combination
satisfied the accuracy and scaling requirements.

4. The PLL gain is proportional to the magnitude of
the input signal. To eliminate gain changes with
power line voltage, the line signal was passed
through limiting code. The limiter includes a
25-sample lockout to “de-bounce” the output.

All of these seemingly minor problems required 2 days
to resolve (6 days real time!) and produced only 40
lines of C code (plus about 100 lines DSP Designer
code).

A test signal was generated using the 40 usec ISR
and was input to the PLL at 60.0962 Hz. Test code
was used to measure peak and RMS noise, using the
deviation of the zos (sine signal) when the sync signal
switched. Results for 1000 samples were:

 Peak deviation: 3.9%
 RMS deviation: .75%

The test code remains in the source code[2] and can
be activate by including the
 #define TESTERROR
line.

Summary: Converting analog technology into a digital
implementation is made easier using Z-Transform models
with SPICE simulation. Moreover, automatic code generation
using a matrix-based solution relieves the designer of
the excruciating job of scaling each multiply-accumulate
operation. It uniquely eliminates unused states by ordering
the unneeded states at the top of the matrix so that backward
substitution ends with the last required state…it simply
doesn’t solve for unused states.

These features are unique to ICAP/4 DSP Designer; to
recap:

1. A new more efficient Z-Transform model that
guarantees convergence

2. Decomposition of the SPICE matrix for DSP code
generation

3. Generic C-Code generation
4. Assembly code for selected DSPs

References:

[1] Phaselock Techniques, Floyd M. Gardner

[2] Downloads of the detailed design are
available at www.intusoft.com/DigitalPLL.zip.

http://www.intusoft.com/DigitalPLL.zip

