
1

Current AHDLs focus on device modeling. To limit HDL usage to this
realm is to waste a vast and powerful capability. HDLs will change the
simulation world, but not just in the area of modeling as most proponents are
proclaiming. This article discusses how XDL, a new public domain analog and
mixed signal HDL released by the Georgia Institute of Technology, allows
engineers to venture beyond modeling tasks to tackle new applications. As an
example, a “mixed domain” simulation is featured whereby a SPICE
simulation is enhanced with algorithmic processing and interfaced with PC
hardware. Description of the mechanisms involved in the XDL model
development, including the model architecture and use of OLE2.0, is covered.
In addition, a new library of array processing models (the SALT modeling
package) and hardware/software interface models is discussed.

HDLs for Speech Processing
by Charles Hymowitz, Intusoft

• New Non-Proprietary HDL based on C for Windows and Unix
Analog & Digital Modeling and More

• XDL - eXtended Description Language
SPICE Today
What are AHDLs good for anyway?

• XDL Model Development
Model development made “easy”

• SALT - SPICE Array Linking Technology
Model development made even easier
OLE2.0 Integration
The New Frontier - Mixed Domain Simulations

• Speech processing using .wav file data, array processing
algorithms, SPICE, and PC Hardware

2

SPICE is a proven simulator for all types of electrical AND nonelectrical
simulations. An AHDL capability is NOT needed to perform mechanical,
hydraulic, thermal, or physical simulations. SPICE simulators today support
three classes of constructs; SPICE 2, SPICE 3, and SPICE extensions. Some
common extensions, available in most commercial versions of SPICE, are
shown on the next page. These advanced modeling constructs are the main
reason why users don’t need an AHDL to model the vast majority of the
analog and mixed signal functions.

In terms of model portability, SPICE models are, by far, the most prolific.
Over 3000 models from more than 15 vendors are now being exchanged
throughout the industry. More are continuously created and distributed. While
some syntactical incompatibilities exist, they are rarely insurmountable. For
example, the syntax for procedural If-Then-Else constructs [1], Table models
[2], and switches [3] are different between different SPICE vendors. However,
models using these SPICE 3 extensions are in widespread use today with the
syntax differences causing no difference in performance and little difficulty in
translation.

SPICE Today

• Analog Simulation
• Mixed Mode and Mixed Technologies
• Applications: Mechanical, Hydraulic, Thermal, Physical,

Biological, Fuzzy Logic, Neural Networks
• Modeling

SPICE 2 Constructs
SPICE 3 Constructs
Behavioral, Mathematical, and Procedural
Nonlinear Differential Equations

• Model Portability - Over 3K models from >15 vendors;
some using SPICE 3

3

For an AHDL to be accepted it must address several issues. The language
should offer portability between simulators and a comprehensive set of
modeling constructs. It should allow analog, digital, mixed mode, and
nonelectrical elements to be simulated together and have a library of predefined
models. The language should have both academic and industry backing, and be
available at a reasonable cost on a variety of platforms. These qualities are also
largely applicable for analog extensions to VHDL and Verilog.

Clearly, today’s SPICE 3 based simulators support virtually all of these
requirements without the need for any AHDL language-like support [4]. Not
enough is known about the advances in behavioral modeling due to new
Berkeley SPICE 3 versions and industry wide vendor improvements. Current
features are often overlooked by AHDL proponents, to the public’s detriment. In
many cases, AHDLs are compared to SPICE 2, which is almost 20 years old,
rather than current state of the art SPICE 3 based simulators.

While SPICE presents some powerful capabilities there are many areas
where it can not venture. These are most easily covered by offering an interface
to the C programming language. Standardization of current SPICE 3 extensions
plus a C code subroutine ability would effectively eliminate the need for any
specific “AHDL language” and would result in far greater benefits to the
engineering community. This is the task of the ABCD committee which has
begun a standardization effort on several fronts.

SPICE Today

SPICE 2 + SPICE 3 + C Subroutines => AHDL

SPICE 2G SPICE 3 XDL Models
Passive Elements Math Equations More Analog Primitives
Semiconductors If-Then-Else Digital Primitives
Polynomials Equations Table Models C Code Subroutines

Boolean Expressions Laplace Equations
Switches/Lossy Lines New Semiconductors

Unembedding SPICE elements
B Element Extensions On the Way:
Time step control, derivatives, more math, more digital

SPICE 2 + SPICE 3 + C Subroutines => VHDL-A

• Portability, compatibility, universal acceptance, public domain, low cost, all platforms

• ABCD Committee, Analog Behavioral C based Description - Beginning standardization

4

A primary example of the type of C subroutine architecture that can be
added to SPICE is XDL. XDL (eXtended Description Language) is based on the
XSPICE program from the Georgia Institute of Technology.
XSPICE starts with SPICE 3C.1 and adds a built-in (native) general purpose
event-driven simulator and the ability to add C code subroutines as new model
primitives. To help interface the C subroutines, a series of compilers, macros,
and functions are included to ease model development and shield the developer
from the intricacies of SPICE. This additional non-SPICE functionality can be
extracted from the SPICE 3C simulator core in XSPICE and added to other
proprietary simulators. For instance, the XSPICE additions have been ported to
Windows by several vendors including Intusoft and Cad-Migos.

There are many benefits to using a C based AHDL, like XDL, under
Windows (see the following page). While some benefits result from being under
Windows, others are inherent in the HDL itself. One key benefit is that C
provides access to the operating system. Another is that XDL allows designers
to define their own “signal” (node) types as arbitrary C data structures.

These features may not seem that significant, but the combination of the
user-defined signal capability, an event-based simulation capability, and access
to the operating system, allows XDL to support advanced mixed-technology
simulations and support application domains well beyond conventional
simulation boundaries.

XDL - A New Non-Proprietary HDL

• What advantages does XDL have?
Non-proprietary (Georgia Institute of Technology)
Tight linkage with Berkeley SPICE
Windows and Unix versions
Based On C

• The “real” standard language
• Access to the operating system
• Windows DLL object, OLE 2.0 integration
• Access to the latest software technology without vendor interference

• AHDL Benefits
• Ability for users to define their own “signal” (node) types as

arbitrary C data structures; Array Node for example

5

XDL Benefits
XDL Modeling Benefits To Users
• Creates analog, digital, and mixed mode models using C.

• Implements specialized models: mechanical, radiation, stripline, neural networks, image processing, etc.

• Provides high level models for system-level top-down design

• Interfaces other programs, simulators, and hardware to SPICE

• Mixes hardware test and measurement with SPICE simulations

• Can add or share models without the need to buy more software or wait for updates

• Currently supported on Windows, Windows NT, and Unix based simulators

XDL Modeling Benefits to Model Developers/Tool Vendors
• Adds models to SPICE in Days instead of Months

• Avoids the need to recompile the SPICE executable each time a new model is added

• Easier to learn; no need to learn a new language or new tools

• Easier to adapt existing SPICE models (compared to other AHDLs)

• Easier to adapt to other simulators; much less resistance since language was developed by academia

and is virtually free

• The interface is non-proprietary and can be added to any SPICE program or other proprietary simulators.

• Predefined library of functions shields the developer from virtually all internal SPICE related concerns

• Primitives are added to the simulator via a Windows DLL

• SPICE elements can be separated from the simulator (several have already been extracted)

• Tools are affordable and available on common platforms

XDL Modeling Language Benefits
• XDL uses C; no AHDL language is more standard or pervasive

• XDL provides greater modeling flexibility than other solutions

• Unlimited state variables • User-defined node/data types

• Greater flexibility; only limited by what you can do in C

• Unlimited number of model parameters of type real, integer, complex, string, or Boolean

• Unlimited ports ; Scalar, vector, real, integer, ground reference, differential, digital (12-states),

resistance, conductance, voltage and current port types

• Definition of model ports and parameters via ASCII text file

• Access to the operating system

• Developers can use SPICE modeling code and techniques

• XDL, SPICE 2, and SPICE 3 could become part of the VHDL-A/Verilog-A specification

XDL Modeling Benefits To Hardware Vendors
• Language based on publicly available, non-proprietary XSPICE

• Model source code is portable to ANY simulator that understands XSPICE

• Source code OR compiled DLL object can be distributed to users; hides proprietary information

• Use of the DLL hides the model implementation. DLL can be copy protected.

• XDL models can be combined with existing SPICE macromodels

• XDL can be used to encrypt existing SPICE macromodels

6

HDL efforts to date have been myopic and too narrowly scoped. Design
engineers need description languages and design environments that help them
control the entire system design space, not just pieces of it. They need
description languages that support broad static analysis, as well as simulation.
They need design environments that support in-the-loop analysis of a mixture
of simulated, prototyped, and fielded components along with their users. They
need description languages and environments that support automatic derivation
of manufacturing and maintenance testing during the design process while
testability flaws can be corrected or avoided. These needs indicate description
languages must exceed their current scope. XSPICE extensions to SPICE,
including XDL, were developed with these objectives in mind.

The modeling capability of an AHDL represents only a small part of its
utility. With access to the C language, designer’s can find a wealth of
opportunities to expand the reach of circuit simulation beyond today’s
boundaries. Access to the operating system allows SPICE to interface with
other programs and with hardware. This opens the possibility of a “mixed
domain” simulation where a software simulation is integrated with data from
hardware.

What Will AHDLs Be Used For?

• Modeling (from the analog/mixed signal designer’s point of view)

AHDLs are redundant, difficult to use, overly complex
Semiconductor models are usually written in C anyway
Models have more simulator dependencies than in VHDL/Verilog

• C - key to expansion beyond modeling

• Interfacing different simulators, utilities, programs
• Integrating Hardware <- with -> Simulation

Integrated Test, Measurement, and Simulation
Access to real life conditions (stimulus, control)
Analog hardware modeler

77

Creating An XDL Model

• Creation of the directory structure
• Definition of the model interface specification (ASCII)
• Definition of the C subroutine
• Compiling and Linking the model

Code Model
Interface
Routines

Parser
Extensions Runtime link

User Defined
Code Models

Supplied Code
Model Library

DLL

DLL

SPICE 3F
Simulation

Core

Event Driven
Simulator

Real Time
Display and
Interactive

Control Windows NT
Visual C++

Accessor
Macros and
Functions

Tools
(Compiler, Make)

Code Model
Development Kit

IsSpice4 Analog-Mixed
Signal Simulator

C Code +
Interface File
Specification

XDL models are like traditional SPICE models except they are created with 2
files; an ASCII table, called the “interface file specification” and a C code
subroutine describing the model’s behavior. The interface file specification
describes the model’s ports and parameters and is compiled into a C file with a
supplied compiler tool. In the case of the Windows version of XDL, the code
describing the model is linked to the simulator via an external file (Windows
DLL) rather than being bound within the executable program. This allows new
primitive models to be added to the simulator, and old models changed, without
having to recompile SPICE.

XDL was developed with the thought that the number of model users would
be proportionately greater than the number of model developers. It is expected
that the power modelers will have substantially higher technical expertise, so, for
them, the full capability of a general purpose language, C, is provided. However,
since no one really wants to have to deal with the intricacies of SPICE, XDL
insulates developers from the internals of SPICE with a comprehensive set of
accessor macros and functions. Given the general purpose programming nature of
C, it is possible for XDL to provide support for most anything that can be
programmed including other HDL languages.

The combination of a standard language (C), ASCII model definition file,
macros and functions for common operations, and a popular compiling and
debugging environment (Microsoft Visual C++) provides one of the easiest
AHDL model development paths for the analog designer.

8

XDL Model Description - This page contains an example listing of an XDL GAIN
block. Included are the interface file specification showing the model’s ports and
parameters and the XDL code describing the model’s behavior.

ASCII Model Description File - Interface File Specification
NAME_TABLE:
C_Function_Name: cm_gain
Spice_Model_Name: gain
Description: “A simple gain block”

PORT_TABLE:
Port_Name: in out
Description: “input” “output”
Direction: in out
Default_Type: v v
Allowed_Types: [v,vd,i,id,vnam] [v,vd,i,id]
Vector: no no
Vector_Bounds: - -
Null_Allowed: no no

PARAMETER_TABLE:
Parameter_Name: in_offset gain out_offset
Description: “input offset” “gain” “output offset”
Data_Type: real real real
Default_Value: 0.0 1.0 0.0
Limits: - - -
Vector: no no no
Vector_Bounds: - - -
Null_Allowed: yes yes yes

XDL Model Body
void cm_gain(ARGS) /* structure holding parms,
inputs, outputs, etc. */
{
 Mif_Complex_t ac_gain;

 if(ANALYSIS != AC) {
 OUTPUT(out) = PARAM(out_offset) +
PARAM(gain) * (INPUT(in) + PARAM(in_offset));
 PARTIAL(out,in) = PARAM(gain);
 }
 else {
 ac_gain.real = PARAM(gain);
 ac_gain.imag = 0.0;
 AC_GAIN(out,in) = ac_gain;
 }
}

9

One example of the extent to which XDL can enhance SPICE is shown
above. SALT, or SPICE Array Linking Technology, provides a generalized
OLE 2.0 interface. It also provides various array processing functions and
file/hardware input (source) and output (sink) functions that are ready to be
used. These functions are OLE 2.0 automation servers, but act like standard
SPICE models from the user’s point of view. The interconnection between the
SPICE simulator and the OLE 2.0 objects is provided by the ARRAY DLL,
also provided with SALT.

The ARRAY DLL is an XDL model created with the Intusoft Code Model
Software Development Kit (CMSDK). The CMSDK is used to create XDL
models under Windows. SPICE interfaces are provided by the Array client.
Windows-OLE2 interfaces are provided by an OLE automation server
template.

The OLE 2.0 automation servers are the easiest way to develop high level
models because they do not require the user to interface directly with Windows
or SPICE. No graphical interface is required and no XDL related development
is needed. Designers can add their own array processing algorithms and
interfaces by using any C compiler capable of building OLE 2.0 32 bit in-
process server DLLs.

SALT Architecture
• The SALT architecture greatly eases certain types of HDL

model development.
• OLE2 servers can be created with any C/C++ compiler

capable of making in-process servers

Common
Data

XDL models are separate from
the simulator, they can be
added anytime. New OLE 2
servers, like the source & sink
interface models, can be
defined by the user.

memory mapped file

Source
OLE

Automation
Servers

Array
Algorithms

Sink

User Generated Servers
no graphical user interface needed,
they only connect to SPICE via the

Array DLL

Mixed-Domain
Simulator

Blurry SPICE - Analog,
Digital, Sampled Data,
Hardware

SPICE
Core

Array
OLE Client

No OLE 2
overhead

XDL
Models

ARRAY DLL
(Windows DLL)

SALT - SPICE Array
Linking Technology

10

The OLE automation servers connect to array nodes that are, in reality,
connected to memory mapped files. These files contain the data array and
descriptors needed to identify data type and state information. The array nodes
were created using the user defined signal capability available in the XDL.
Input and output servers convert between real world data and memory mapped
data. This makes it possible for sound to be input from a microphone which
would then connect to an array node. The array node can then be converted to
traditional analog or digital data.

The Array OLE server is a more advanced OLE component in that it has a
graphical interface and can talk to other OLE clients. The OLE automation
servers only talk to the ARRAY DLL. The Array server has methods needed
by other applications. In particular, the Array OLE server interfaces to a
Display container (Display OLE Client) which can render a pictorial or
graphical view of the simulation data. The Display client is used to display the
representation of the array waveform. The display client can work with many
clients simultaneously; for example, in third party programs such as a
schematic capture and data analysis applications.

Extending Simulation Capabilities
• The Array (OLE Client) is an XDL model. Other OLE components

connect to SPICE via the Array DLL.
• New OLE automation servers can be added without the need for any

Windows or XDL related coding.

SPICE

Array
OLE Client

Array
OLE Server

Display
OLE Client

XDL
Models

Could be SPICE,
schematic, post

processor or other
vendor’s product

Common
Data

messaging

memory mapped file

488, GPIB, etc..
Test / Lab
Interface
Servers

Word
Labtech Notebook

Other
Schematics

Source
OLE

Automation
Servers

Array
Algorithms

Sink

Talks to OLE
Clients

User
generated

servers

ARRAY DLL

11

Schematically, SALT objects connect like any other electronic device. The
example above contains some basic illustrations. At the top, an input signal is
feed into two analog to array blocks which convert the analog information into
an array format. One signal is first passed through an analog filter. The array
data is summed and then converted back into an analog signal (array to analog
block). In this case, the Array Function blocks simply copy data from their
input to their output.

In the bottom section, speech from a .wav file is read in and compressed by
the Array Source block. The data is then uncompressed and played through a
speaker by the Array Sink block. Both the top and bottom paths are simulated
at the same time.

The source and sink objects convert between real world hardware, or data
stored in files, and the array signal type. Array information can be processed
with mathematical functions (FFTs, wavelet transforms, etc.) or be converted
to an analog or digital signal. The model parameters for each block are shown
in bold type.

Mixed Domain Simulations
• Simulations can utilize input data from a file or a device, SPICE elements,

array processing algorithms, and output to hardware or a file
• Designers can create new interface blocks and new array functions

.wav file Array_Sink
Output to File or Device

Hellooo

Analog
to Array

Transforms
Wavelet

FFTs
IFFTs

...
Matrix
Math

Algorithms

Array_Source
Input from File or Device

Model Parameters - Source
op = source ; use Array Sound Server
argname=sound file wavelet daub20 nplay
dim=[4096] ; array dimensions
period=.2 ; sample interval
compress=0 ; percentage compression
input=hello.wav ;file/device containing data

Model Parameters - Sink
op = sink ; use Array Sink Server
argname=sound device wavelet daub20 play
output=hello.wav

Array to
Analog

Model Parameters - Analog to Array
dim=[20 5 6] ; array dimensions
loc=[1 3 2 5 3 3] ; starting location
period=1

dim=[20 5 6]
loc=[11 3 3]
period=1

Model Parameters - Array
dim=[20 5 6]
op=Copy

Analog
to Array

Array
Function

Array
Function

Out

Input
Σ

Analog Circuitry

1211

In this next example, SPICE elements, array processing, and hardware
interfacing are all utilized. Sound is read in (sampled) from a file as the input
stimulus by the array source block. This time, some of the array elements are
broken off and converted to an analog signal by the array to analog block. At
this point the user is free to insert circuits with SPICE or XDL elements
(analog, digital, nonelectrical, sampled-data, etc.). The processed data is then
recombined into an array format before output to a speaker.

With the advent of integrating SPICE with real time processes, it is
necessary to rethink SPICE’s internal architecture in order to make it more
appropriate for interactive rather than batch processing. This has been done in
SPICE3 and to an even greater extent in IsSpice4, a commercial version of
SPICE 3F. Using IsSpice4, both the electronic (filter bandwidth) and
algorithmic portions (compression) of the design were interactively varied to
see their effect on the sound output.

It should be noted that if there is no analog (SPICE) signal processing in
the data path, then array information can be processed at or above real time
speed.

Mixed Domain Simulations
• Simulations can utilize input data from a file or hardware, SPICE elements,

array processing algorithms, and output to hardware or a file
• Designers can create new interface blocks and new array functions
• Circuit or Hardware can be explored INTERACTIVELY!!!

Sweeping Compression

.wav file

Matrix To
Sound

Hellooo

MIDI Wave to
Matrix

HELLO

Transforms
Wavelet

FFTs
...
...

Array To
Analog Model Analog To

Array Model

Matrix
Math

Algorithms

13

The array processing library allows both sound and images to be used
within a simulation. Both input and output are supported using file or hardware
access. The audio and video interface models make it possible to include
complex and realistic stimulus waveforms in a simulation rather than
approximations. Several array transforms are also provided including wavelet
transforms.

Connection of the SALT functions to the underlying analog simulator
allows the user to push down into the details of a design hierarchy in order to
compare a detailed implementation with a more abstract system view. For
instance, complex blocks of circuitry can be replaced with algorithmic
representations.

 More important, however, is the ability for designers to add their own
functionality. Interface models allow hardware devices to be connected
directly to the simulation. Models can be developed that interface the
simulation of newly designed circuit blocks to previously breadboarded
circuitry. XDL models can also be used to connect SPICE to other analytic
engines, such as MATLAB or Maple. One might use Prolog, for example, to
emulate a human user of a system as an embedded part of a system simulation
driven by IsSpice4, or perform symbolic analysis of waveforms generated by
some other part of the simulated system. The possibilities are open ended.

OLE2 Server Possibilities

SALT
• Wavelet Transforms, Variable Radix FFTs, Matrix Math
• Sound input (file or microphone), Image input (TIFF)
• Sound output (speaker or file), Image output (TIFF or screen)
• Source Code
• I/O From Hardware; Feedback with SPICE in the Loop

User Defined
• Mathematical operations
• Connection of SPICE to other analytic engines, such as

Matlab or Maple

14

XDL opens up many areas of simulation to SPICE users that were formally closed
because of the complexities of modeling and the lack of access to the operating system.
It extends SPICE’s capabilities to allow efficient simulation of mixed-signal, mixed-
technology, and mixed domain systems. It also allows users to take advantage of the
latest software integration technologies like OLE2.0.

Standardization of popular SPICE 3 extensions and a C subroutine capability, such
as XDL provides, should greatly benefit the engineering community. This effort has
commenced with the availability of the non-proprietary XSPICE program and the
independent ABCD committee. SPICE is clearly the de facto standard for analog and
mixed signal simulation. With XDL’s ability to support other HDLs it appears that this
situation is unlikely to change, at least for the analog designer. It remains to be seen
how equivalent capabilities will be integrated into other AHDLs, VHDL and Verilog.

[1] “SPICE As An AHDL”, Charles Hymowitz, Analog and Mixed Signal Design Conference, July 1994

[2] “Modeling Pentodes”, Frederic Broyde, Charles Hymowitz, Intusoft Newsletter, April 1994

[3] “New IBIS Models From Intel”, Charles Hymowitz, Intusoft Newsletter, May 1993

[4] “MCT Applications”, Charles Hymowitz, Intusoft Newsletter, April 1994

[5] “New AHDL Based on C”, Charles Hymowitz, Intusoft Newsletter, 10/94

[6] “Inside OLE2”, Kraig Brockschmidt, Microsoft Press, 1994

[7] “Microsoft Developer Network, Windows NT 3.5 Workstation and Win32 SDK”, Microsoft
Corporation, January 1995

Future SPICE and XDL Work

• Standardization of SPICE 3 extensions and XDL
• Standardization of the XDL Windows DLL object
• Separation of Models from SPICE

• Interactive integration with various schematic entry systems
• Integration with various Digital Simulators

• Ability to simulate VHDL and Verilog models

• Integration with Hardware Test, Measurement, and Control
• Analog Hardware Modeler

