
Z Transform Basics Design and analysis of control systems are usually performed in 
the frequency domain; where the time domain process of convolution is replaced by a 
simple process of multiplication of complex polynomials in the frequency domain. 
Sampled data systems use a similar concept using a unit delay as the basic building 
block. The analog s-plane maps into the sampled data z-plane by substitution of 
variables where z=esT or more importantly by  

z-1=e-sT 

The later representation is seen to be identical to a delay line, with z-n representing a 
delay of nT seconds. Transfer functions, including impedance and admittance functions 
are described as polynomial ratios of the form G=N/D, where N=a0 + a1z-1 + … anz-n and 
D = 1 + b1z-1 + … + bnz-n are the numerator and denominator polynomials respectively. 
Notice that b0 = 1.  Then rearranging the following equation with D’ = D-1  
 
 Vo/Vi = N(1+D1) 
 Vo(1+D’) = ViN 
 Vo = ViN-VoD’ 
 
which is the “Direct” programming method that is more rigorously derived in  [2] pp 
284,285. This equation can also be implemented in the s-plane using the following block 
diagram. This implementation allows for SPICE analysis of the time domain difference 
equations, including both transient and ac analysis. 
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Figure z1, Direct Programming Method 



 
 
 
Bilinear Transform Solving for s as a function of z yields 
 

s=(1/T)ln(z) 
 
The ln(z) function can be broken down into 2 common approximations. Lets first do this 
by using the first term of the series expansion where  ln(z) = 2(z-1)/(z+1). Then let z+1 = 
2z to further simplify to ln(x)=(z-1)/z. So that 
 
 s=(1/T)(z-1)/z 
 
 s=(2/T)(z-1)/(z+1) 
 
The first representation is the one commonly used [2] pg 60 in the z-transform tables. 
Mathematically it is common to let T = 1 and omit it from the tables, leaving it to the user 
to scale the result for other sample frequencies. This scaling is quite valuable for 
evaluating high order polynomials where preventing numerical overflow is important; but 
the work presented here will never go beyond first order polynomials so the value for T 
will be retained. Restating the above equations to represent integration and delays 
yields: 
 
 1/s=T(1/(1- z-1))    Rectangular integration 
     (z Transform) 
 1/s=T/2(1+ z-1)/( 1- z-1)  Trapezoidal integration 
     (Bilinear transform) 
 
There are 2 interpretations to these equations in terms of integration method, although 
they were derived here from a series expansion; they could have also been derived in 
time domain using rectangular and trapezoidal integration methods. Figure z2 shows the 
results for a continuous time integration of current through a 1 uHy inductor vs. the z 
transform method. The z transform uses a 100kHz sample rate. 
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Figure z2, Z Transform of an integrator compared with continuous time integration 
 
Figure z3 shows the bilinear transform method in which the phase lags 90 degrees up to 
½ the sample frequency. Its magnitude function goes to zero at ½ the sample frequency. 



1 ph_is 2 db_is 3 ph_izb 4 db_izb

10k 20k 50k 100k
frequency in hertz

-24.0

0

24.0

48.0

72.0

db
_i

zb
, d

b_
is

 in
 d

B

-120

-60.0

0

60.0

120
ph

_i
zb

, p
h_

is
 in

 d
eg

re
es

P
lo

t1
1324s-plane phase   z-plane phase   

s-plane magnitude     

z-plane magnitude     

 
Figure z3, Bilinear transform of integrator compared with continuous time integration 
 
 
 
 
These figures illustrate why most designers favor the bilinear transform for low pass 
filters. The filter attenuation actually increases when compared with the same linear 
design and out of band signals near ½ the sampling frequency are attenuated.  That 
makes the anti-aliasing filter easier to design. For control systems, the gain margin 
increases, in some cases improving response time.  
 
As frequency increases past ½ the sampling frequency, aliasing causes the results 
repeat as shown in figure z4. 
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Figure z4, Time domain frequency out vs. frequency in for sample data systems. 
 
While the information bandwidth doesn’t exceed ½ the switching frequency, there is 
indeed information contained above the sampling frequency. Z-transforms can be used 
to described heterodyned signal detection by placing an analog bandpass filter about the 
center frequency of interest followed by a digital lowpass filter. Moreover, the samples 
can be separated by 90 deg (in time), with the in phase component representing real 
numbers and the delayed sample data being imaginary numbers. A Fourier transform 
converts the complex time data to the frequency domain where it can be filtered. Then 
an inverse fourier transform recovers the filtered time dependant data. If certain rules are 
followed, there will be no imaginary data in the time domain. 
 
z-plane frequency warping As shown previously in Figures z2 and z3, s-plane poles 
and zeros ranging to infinity are warped into the z plane. Mathematically, the warping is 
described by evaluating the s-plane frequency for s = jw and the z-plane frequency = 
jwz.  

jw=(2/T)*(e^(jwz*T-1)/( e^(jwz*T-1) 
 
Multiplying numerator and denominator by 1/2*e^(-jwz*T/2) gives 
 

 w=2/T*sin(wz*T/2)/cos(wz*T/2) 
 
 w= c *tan(wz*T/2) or wz=2/T*atan(w/c), c=2/T 
 
Now, the z-plane argument is phase going from –pi/2 to pi/2 as s-plane frequency goes 
from – infinity to + infinity.  
 
 



Figure z5 illustrates this warping. Importantly the warping maps each s-plane frequency 
to a unique z-plane frequency. Filters such as Chebyshev, Butterworth and Elliptical can 
be mapped into the z-plane such that filter cutoff frequencies are the same by adjusting 
c. The filter will then have a somewhat sharper cutoff than its corresponding s-plane filter 
because frequencies approaching infinity are compressed to ws/2. 
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Figure z5, Bilinear transform maps s-plane frequency, f to sampled frequency fz for 
c=2/T. 
 
 
The script shown in figure z5 was used to plot the graph in IntuScope. Notice that angles 
are in degrees, the pi/180 correct this and frequency is converted from 1/sec to Hertz by 
scaling w = 2*pi*f. 
 
To recap; when transforming from continuous to sampled systems, the poles or zeros at 
infinity move to the nyquist frequency (1/2 the sampling frequency) in the z-plane. For 
low-pass filters, there are zeros at infinity so that the signals near the nyquist frequency 
go to zero. The frequency warping between z-plane and s-plane is approximately linear 
for low frequencies; but s-plane frequencies get compressed near the nyquist frequency 
and show different behavior depending on the approximation used for ln(z).The constant 
c can be adjusted to make fz = f at a single frequency. Analog filters are needed to 
select the appropriate frequency range and are usually low pass, rejecting signals >  
1/(2*T) 
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