
DSP Scaling, a PID Example: Difference equations must be scaled to 
fit into the numerical space of a microprocessor. There are 4 parts to the 
scaling problem. First, the dynamic range of the multiply-accumulate, 
MAC, instructions must be less than the word length of the 
microprocessor. Second, the scaling of the multiply must be defined as 
Integer, Fractional or Mixed. Third, the value of the binary word that 
represents a unit of input must be decided. Finally the MAC coefficients 
must be scaled to get an output with sufficient authority from the integral 
term to swing the output over the range of Duty ratio required by the 
controller. 
 
 MAC dynamic range can be defined as the largest coefficient divided 
by the smallest coefficient times the A/D converter range or: 
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For a PID controller[1], the coefficients in continuous time may be 
defined as P,I and D for the proportional, Integral and Differential 
coefficients. Using standard z transform definitions [2] for integration 
and differentiation gives the following coefficients for the z transform 
domain. 
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Where T is the sample interval and Kcoef is a scaling parameter to be 
determined. The dynamic range is then  
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As an example, using 16 bit signed arithmetic, if  
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PREVIOUSPRESENT VV −  overflows and the controller can get stuck with 
the output at the maximum value. If dynamic range is too large then 
there are 3 choices; limit the output, reduce A/D converter bits or limit 
the error signal range. It turns out that limiting the error signal range has 
beneficial side effects. That’s because the current charging the output 
filter is also limited to: 
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Charge current limiting protects parts from overstress and automatically 
gives a soft-start characteristic. Limiting usually does the trick; the next 
choice is to carefully examine the A/D converter accuracy. It’s quite 
possible the vendor has overstated the accuracy so that leaving out 
some bits has no impact. Some microprocessors have saturation 
limiting built into the MAC instruction. But derivative saturation can lead 
to turn on overshoot. 
 
Arithmetic Scaling revolves around the definition of a binary word and 
examination of the arithmetic operations on that word. Three word 
definitions are possible; Integer, Mixed and Fractional.  Figure 
scaling_word shows how the bit weighting works. 
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Figure scaling_word, Bit arrangement for 7.8 scaling. 
 
If the number of bits to the left of the binary point are measured using x, 
and the bits to the right measured by y; then, x.y =“7.8” represents the 
scaling shown in the figure. This representation can also define integer 
scaling, “15.0” and fractional scaling, “0.15”.  Notice that the sign bit isn’t 
included which makes the “x.y” notation work for both integers and 
fractions. 
 
Addition and Subtraction work the same for all scaling methods. 
However multiplication works differently. Integer notation is the 
commonly accepted method used in programming languages from 
assembly language to high level languages such as the C programming 
language. The product fits into the originally scaled 16 bit register as 
long as it doesn’t overflow. The problem for the DSP designer is that 
integer multiplication can overflow; while fractional multiplication cannot 
overflow. Moreover, coefficient rounding is more pronounced with 
integer scaling. Some microprocessors have a fractional mode that 
keeps the result in the product accumulator scale as “0.30”. The product 
register in integer based multiplication scales as 1.30, shifted one bit 
right. If “one” is defined to be 2^y, then we want “one” * “one” to be 
“one”. That requires the product register to be shifted right by y bits 
following the MAC operations. The result can also be shifted into the 
upper accumulator by shifting the result left by (16-y) bits. The shift and 
store operation are usually available as single operations in assembly 
language so that one would expect saving ACCL(p >> 15) to be 
replaced by saving ACCH(p<<1) by a C compiler if the former shift is 
out of range.  
 
 
Coefficient Accuracy: The three methods of arithmetic scaling result in 
different coefficient accuracy. The best accuracy is obtained using 
fractional scaling. The affect of coefficient errors is to misplace the pole-
zero roots from their specified positions. But these specifications come 
from estimating component values that may have tolerances over 
temperature, age and operating points as high as 40%.  
 
As you might expect, the definition of the arithmetic scaling has little 
effect on the net DSP computational result, at least for SMPS controllers 
because the specification accuracy. For more details see how the 
problem is solved using each of the 3 word definitions: 
 
http://www.intusoft.com/ DSP/Drawings/MCHP2zLim.DWG 
 
One: Next, it is necessary to define the binary value that represents a 
unit input. It’s interesting to note, that with mixed scaling, if the quantity 
is known as “one”, then casting “one” as a double and dividing variables 
by “one” will scale them back to their input units. If one = 256, then 
placing Verr/256.0 in a debugger window will scale it back into plant 
voltage. Input scaling is shown in Figure scaling_input. 
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Figure scaling_input, Input scaling broken into 2 parts. 
 
Notice that there are 2 parts to the input error scaling, the A/D scaling 
and an “inscale” multiplier. “inscale” is a shifting pre-scaler that 
increases the input value to “one” and its inverse is applied after the 
computations are complete. Kadc describes how the A/D converter 
measurement is processed, including scaling resistors, reference 
voltage and whether the ADC is left or right justified. “one”*FullScale 
must be greater than 2^ADCbits in order to retain all of the ADC 
precision,  or 
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FullScale is measured using the plant output voltage that saturates the 
A/D. Next, the coefficient multiplier must be selected to give maximum 
coefficient precision and provide the integrator sufficient authority to 
make the output controllable. 
 
As the input limit is made smaller, there is more latitude in selection of 
inscale and Kcoef. These parameters tend to “center” the computation 
between underflow and overflow. 
 
C Language programming: It is convenient, at least for prototyping, to 
do this arithmetic in a high level language. The C programming 
language is known to have a close relationship with hardware 
architectures. Unfortunately the C language integer types are 15.0 for 
int16. The fractional and mixed multiply, accumulate function can be 
computed using the C language as follows: 
 
#define PRODUCT(a,x) (int32)a*x 
Int16 mac2(const int16 coeof1, int16 var1,  
        const int16 coef2, int16 var2, 
           const int16 ybits) 
 
{ // returns a scaled 16 bit result  
  // for coef1*var1+coef2*var2 
 return((int16) ( ( PRODUCT(coef1,var1) +  

PRODUCT(coef2,var2) 
    ) >> ybits 
  )     

              ) 
} 
 

 
Notice the caste of the coefficient to 32 bits forces the C compiler to 
make the product a 32 bit word so that it can be shifted right, back into 
the int16 format. This can be made an inline function to maximize 
speed. It would be nicer to use C++ and override the arithmetic 
functions, but C++ adds extra code layer that slows down DSP 



operation and obscures the eventual hand translation into assembly 
language. 
 
 
Selecting Kcoef: Whatever word scaling is chosen, the integrator 
should be scaled to operate between 0 and less that 0x7fff. Since the 
integrator ramps up slowly, it’s possible to limit its values in a slower 
timing loop. Then selecting a limit value or ¾*0x7fff or 0x628F defines a 
slower timing loop requirement. The gain from the integrator output to 
the the duty ratio control value is then 1/(Kcoeff*one). With the limit set 
at .75*max, the duty ratio max value is 0x628F/one / Kcoeff, or Kcoef > 
0x628f/one. 
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Then the conditions can be satisfied for any value of one from 1 to 
32767; or from fractional through mixed to integer and the same 
controller operation is achieved. 
 
The integrator output needs to be set to zero when input voltage falls 
below the specified under voltage; setting an under voltage lockout flag, 
UVLO, low. That keeps the integrator from locking up to its high limit 
when the control loop is unable to provide enough output voltage.  
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and is the maximum duty ratio and  is the desired output. 
When UVLO is true, the PWM shuts down. 
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Slow timing loop: A slower interrupt can be selected for the integrator  
control by UVLO and saturation. The time is set by  
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where is the integer value of integrator headroom. 132
 
The function of this interrupt is to limit the integrator and test for UVLO, 
resetting the integrator if UVLO is true. Typically, this loop needs to be 
evaluated every 10 or 20 T, sampling intervals.  
 
 
Matrix Solution: The DSP control equations can be expressed using 
matrix algebra as shown in Figure scaling_2. Assume there are j states 
that need to be evaluated, with k of them having a delay history. The 
equations can be arranged as shown with all trivial solutions at the 
bottom of the matrix. Let Hn be the history value Hn. Then the j+k by j 
sub matrix at the top will have its right hand side equal to zero. After 
solving the matrix the Vn values are substituted into the Hn RHS for the 
next iteration. There may be more states than history because some of 
the states may include input and outputs. The main diagonal is scaled to 
be 1 so that there is no divide required in the solution. For large j, the 
matrix coefficients should be sparse and non zero values should be 
near the main diagonal. That’s equivalent to having a number of blocks 
with a single input and output cascaded. If the original matrix had non-
zero coefficients below the main diagonal, then the matrix solves an 
algebraic set of simultaneous equations. DSP’s can be made to have to 
all zero values below the main diagonal by judicious use of backward 



euler integration to break up the signal flow. That has the side effect of 
adding delays and reducing controller bandwidth. 
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Figure Scaling_2, A matrix solution has RHS(0 thru j)=0 
 
LU decomposition, following the forward substitution gives us exactly 
what’s needed [2]. Then backward substitution is a multiply accumulate 
series for all non zero coefficients followed by division by the main 
diagonal value. If mixed precision is used, the main diagonal can be 
normalized to unity; eliminating the division. If integer or fractional 
scaling is used, the result can be multiplied by a predetermined 
constant, formed by dividing the scaling value by the main diagonal 
value, then applying the inverse of the scaling value to the outputs. The 
solution proceeds from the jth row and j+1 column, summing the 
products of the non-zero coefficient with their associated states. An 
array of coefficients is made in the order they will be used and a 
corresponding array of state-pointers can be made to make maximum 
use of the DSP multiply accumulate capability.  
 
const int16  coef[numRowCoef]; 
iInt16 * varptr[numRowCoef]; 
int16 Vn; 
while (numRowCoef--) 
 Vn += *Coef++ *  *(*varptr++)); 
 
C compilers will figure this out; but there’s always hand coded assembly 
language to fall back on. 
 
For Reduced Instruction Set Computers, RISC, it may be necessary to 
limit the range of variable index change from one computation to the 
next. This can be accomplished by moving the rows with H coefficient 
up until they are just below the first coefficient used in that column, and 
the moving the column left to place the unit value on the main diagonal. 
Such a movement doesn’t change the Lower triangle zero condition; but 
it tends to cluster coefficients along the main diagonal. Then the varptr 
usage shown above is replaced as shown below: 
 
const int16  coef[numRowCoef]; 
iInt16  offset[numRowCoef]; 
int16 *varptr; 
int16 Vn; 
while (numRowCoef--) 
 Vn += *Coef++ *  *(varptr + *offset++); 
 
This form may need some adjustment depending on how the C compiler 
does its optimization. If the user identifies states that need a solution, 



then unwanted states can be eliminated by matrix manipulation. That 
reduces the number of MAC initializations and result storage; making a 
faster solution. 
 
Noise: Quantizing of the input and output leads no noise. The RMS 
noise is equivalent to the LSB/sqrt(12). The PID controller A/D noise 
can be referred to the controller input and combined with the PWM 
noise. A/D’s usually have more noise than this theoretical value, it’s 
easy for a vendor to inflate accuracy by adding bits, so you need to 
make a few measurements around 0 and at your set point to test the 
A/D accuracy. Using a modified PID controller results in the block 
diagram as shown in Figure scaling_3. Referring the A/D noise to the 
PWM duty ratio results in amplifying A/D noise by the reciprocal of the 
power filter gain at the controller bandwidth. Taking the gain at the 
controller bandwidth gives a peak value; however, it is observed that 
quantizing noise tends to run close to the frequency domain peak. 
Moreover, its best to add the terms together rather than use an RSS 
approach because these values are no longer in a gausian world. They 
may very well tend to sync with one another rather than behave as 
independent random variables. 
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choose H so that  A*H = B/s

then onoise = PWMnoise + ADCnoise/A*(B/(s+B))
and if s = jB, and R2 is small,
.     onoise = ADCnoise*.707*L*C*B^2/Vi+ PWMnoise 
and if R2 is large
.     onoise = ADCnoise*.707*L*B/(Vi*R2) + PWMnoise 

B = Bandwidth (1/sec)
R2=capacitor ESR
R1=Inductor ESR
L=PWM inductor
C=PWM capacitor

PWMnoise

 
Figure scaling_3, Calculation of quantizing noise for an ideal controller 
 
The 2 computations form an upper and lower bound for noise without 
concern for B with respect to 1/(R2*C). For both cases, increasing B 
increases the quantizing noise at the PWM, for the case studies done 
here, it runs between 2 and 4 times larger, so that the PWM accuracy 
can be 1 or 2 bits less than the effective A/D accuracy. If round off error 
occurs anywhere in the computation, additional noise sources must be 
added at those points and summed into the resulting PWM noise. 
 
 
 
 
 
 
 
[1] PID control equations 
 
Given a plant described by Figure PID_1, 
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Figure PID_1, the plant model 
 
Its transfer function, Aplant, is: 
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Where 
 C is the capacitor value 
 L is the inductor value 
 R1 is the inductor ESR 

R2 the capacitor ESR 
Kp is the PWM gain = Vin 
 

And a controller that compensates for the plant by matching the plant 
poles and zeros, where P,I,D are controller coefficients shown below. 
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If the controller cancels the open loop poles and zeros, then the loop 
gain G is given by: 
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Then for bandwidth B, 
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If R2, the capacitor ESR is large, it may be necessary to insert a 

canceling lag, 
1
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 or other compensation in the controller. 

 



[2] z transform PID controller 
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then substituting into the PID equation we find the z coefficient become 
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[3] Quantizing Noise 
 
Assume the measurement of an input variable is equally likely to be 
made anywhere in between A/D bits.  Then drawing a straight line 
between –1/2LSB to +1/2LSB, the error is 
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Then 
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This calculation assumes the measured input is uniformly spread across 
the measurement space. Unfortunately, in control systems, the noise 
tends to synchronize and move to the frequency where gain peaks. For 
most controllers that’s near the controller bandwidth. 

  
 
 
 
 
 
 
 


