
Control Systems Sidebar Much of the literature concerning 
digital control of SMPS uses a proportional-integral-differential 
(PID) controller, sensing only the output voltage. The “optimum” 
control transfer function is the reciprocal of the L-C filter gain 
followed by a digital integrator. This gives the so-called deadbeat 
response by making the open loop transfer function  

A=z-1/(1-z-1) 
which results in a closed loop transfer function of G=z-1 (substitute 
A into G=A/(1+A)) so that the output reaches the input in one 
sample period. The error to a step input will be exactly zero at the 
next sample time. This concept is borrowed from motor control 
systems, which has the objective of rapidly tracking a position 
control signal. Figure PID shows how the controller responds to the 
control voltage command and the load step.  
 
The SMPS control problem is different because the reference 
doesn’t change except at startup. The desired response 
characteristic is zero output impedance and a null input to output 
transfer function. Moreover, the noise produced by the switching 
action must be filtered at the input in order to eliminate interference 
with other circuits. Complicating matters even more, the output filter 
capacitors loss (real part) stays at a constant fraction of its 
impedance, making the high frequency ESR and the resonant 
damping resistance different. These additions make the system far 
more complex; perfect pole-zero cancellation is not practical. 
 
The biggest problem achieving optimum PID controller response is 
the ill-behaved filter capacitor; its ESR adds a zero, preventing high 
frequency roll-off. Moreover, the ESR is not constant over 
frequency; it increases at lower frequencies. Modifying the PID 
control by inserting a pole to continue the roll-off (matching the 
undesired zero) mitigates the control problem. PID compensation 
eliminates the L-C filter resonance by pole-zero matching. It is 
necessary to consider the effect of component tolerances on 
stability margins. A general rule of thumb is to force the complex 
zeros to occur at a frequency slightly below the L-C pole frequency. 
By doing that, the frequency response consists of a lead-lag, 
approaching 180 digress at resonance which gives increased 
phase margin. On the other hand, if the compensating zeros occur 
at a higher frequency than the L-C poles, a phase lag-lead occurs, 
destabilizing the system at low gains. Gain reduction is a naturally 
occurring situation for large signals because of controller saturation 
(Duty ratio is limited between 0 and 1). Therefore a lag-lead 
characteristic makes it possible to enter large signal instability at 
start-up. Then the nominal offset in matching needed to guarantee 
stability results in increased ringing at the L-C resonant frequency 
for the nominal case. 
 
Interestingly, the L-C characteristic impedance, sqrt(L/C), is 
proportional to sqrt(1/Fs) so that the damping of the resonance will 
go down with increased switching frequency. The reduction in 
impedance comes about because the filter inductor is made smaller 
to accommodate the same switched ripple current.  Size and cost 
of the inductor are also reduced, so that the switching frequency 
should be increased until the stray inductance causes output noise 
to increase or because switching losses cause unacceptable 
degradation in performance. For the problem considered here, 
switching at 300kHz is about optimum. 
 
An alternative controller uses peak or average current detection to 
turn off the PWM. This is the most often-used compensation 



scheme for an SMPS. It is really a dual loop controller, with the 
inner loop proportional to inductor current. The outer loop is usually 
an integrator with a lead-lag stabilization network (nearly PI 
compensation). Overshoot tends to be eliminated if the phase 
margin is above about 60 degrees. The inner loop is similar to the 
derivative feedback, but it also contains a DC component equal to 
the load current. This inner loop reduces the control system from a 
lightly damped second order system to a first order system, with a 
pole at the L-C resonant frequency. This eliminates the pole-zero 
matching problem, making the current controller more robust with 
respect to component tolerances. The analog version is faster than 
a similar digital version because of the DSP computational delay. 
That slightly reduces the inner loop bandwidth, making the overall 
control bandwidth a bit lower than can be achieved with a modified 
PID controller. 
 
The current controller gives better audio susceptibility results , 
namely minimizing vout/vin gain. The modified PID controller 
contains more switching noise at the duty ratio control point. In 
either case, noise levels are within acceptable limits, mostly 
affecting the A/D converter in a digital system and op-amp slew 
rates in analog systems. 
   
The current loop requires measurement or estimation of the 
average inductor current. Using a plant model proposed here, the 
average current in the inductor can be recovered and combined 
with the estimated ripple current to form the predicted peak current. 
Refer to figure 1 and figure 3 to see how the peak current is used 
and how it’s reconstructed based on observed and hidden states. 
The penalty for DSP current mode control is an increase in 
computational delay. Over time the penalty will become vanishingly 
small because of Moore’s law. Circuits and waveforms that form the 
basis of this discussion can be found down loaded from 

www.intusoft.com/DSP/PID.zip 
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Figure PID, Test results show the PID waveform ringing at the 
L-C resonant frequency, but increased switching frequency 
mitigates the affect. 
.  
 
 
 


